• <tr id='w2Er96'><strong id='w2Er96'></strong><small id='w2Er96'></small><button id='w2Er96'></button><li id='w2Er96'><noscript id='w2Er96'><big id='w2Er96'></big><dt id='w2Er96'></dt></noscript></li></tr><ol id='w2Er96'><option id='w2Er96'><table id='w2Er96'><blockquote id='w2Er96'><tbody id='w2Er96'></tbody></blockquote></table></option></ol><u id='w2Er96'></u><kbd id='w2Er96'><kbd id='w2Er96'></kbd></kbd>

    <code id='w2Er96'><strong id='w2Er96'></strong></code>

    <fieldset id='w2Er96'></fieldset>
          <span id='w2Er96'></span>

              <ins id='w2Er96'></ins>
              <acronym id='w2Er96'><em id='w2Er96'></em><td id='w2Er96'><div id='w2Er96'></div></td></acronym><address id='w2Er96'><big id='w2Er96'><big id='w2Er96'></big><legend id='w2Er96'></legend></big></address>

              <i id='w2Er96'><div id='w2Er96'><ins id='w2Er96'></ins></div></i>
              <i id='w2Er96'></i>
            1. <dl id='w2Er96'></dl>
              1. <blockquote id='w2Er96'><q id='w2Er96'><noscript id='w2Er96'></noscript><dt id='w2Er96'></dt></q></blockquote><noframes id='w2Er96'><i id='w2Er96'></i>
                《電子①技術應用》
                您所在的位置:首頁 > 測試測量 > 設計應用 > 一◤種改進的粒子濾波檢測前跟蹤算法
                一種改進的粒子濾波檢測前在这里没有人会为你出头跟蹤算法
                2020年電子↑技術應用第4期
                高廣順,陳 霄
                杭州〖電子科ξ 技大學 通信信息傳輸※與融合技術國防重點學♂科實驗室,浙江 杭州310018
                摘要: 針對多個信噪比相差較大時容易發生的目標漏檢問題,提出︼了一種改進的多目標雙層粒子濾波檢測前跟蹤算法(IM-PF-TBD)。算法铁补天微笑着采用雙層粒子濾波結構,在目標檢測層中,采用錦標賽々選擇方法對檢測粒子群進行湮笙蒼夢重采樣,選取多個權重相差較大的粒子,通過粒子聚類同時檢測多個目標,提高了檢測初期較弱目①標的存在概率。此外,算法提出了粒子群融意念合方法用於新發Ψ 現目標的驗證,便於目標檢測後虛假目標的剔除。仿真結果表看进眼中明,所提算法能有效改善信噪比較小的目標的檢測概率並降低目標RMSE。
                中圖分類號: TN95
                文獻標識李冰清不为所动碼: A
                DOI:10.16157/j.issn.0258-7998.190984
                中文引用格式: 高廣順,陳霄. 一種改進的粒子濾波檢測前跟蹤算法[J].電子技術應馅饼啊用,2020,46(4):61-65.
                英文引用格式№: Gao Guangshun,Chen Xiao. An improved particle filter track-before-detect algorithm[J]. Application of Electronic Technique,2020,46(4):61-65.
                An improved particle filter track-before-detect algorithm
                Gao Guangshun,Chen Xiao
                National Defense Key Discipline Laboratory of Communication and Information Transmission and Fusion Technology, Hangzhou Dianzi University,Hangzhou 310018,China
                Abstract: Aiming at the problem of missed targets that easily occur when there are large differences in signal-to-noise ratio, this paper proposes an improved multi-target dual-layer particle filter track-before-detect algorithm(IM-PF-TBD). The algorithm uses a two-layer particle filter structure. In the target detection layer, the method of tournament selection is used to resample the detected particle group, select multiple particles with large weight differences, and simultaneously detect multiple targets through clustering. The existence probability of weak target in early detection is improved. In addition, the algorithm proposes a particle swarm fusion method for verification of newly discovered targets, which facilitates the removal of false targets after target detection. Simulation results show that the proposed algorithm can effectively improve the detection probability of targets with small signal-to-noise ratio and reduce the target RMSE.
                Key words : particle filter;track-before-detect;multiple target;tournament selection;particle swarm fusion

                0 引言

                    檢測前跟蹤(Track-Before-Detect,TBD)方法是一種♂非相參積累的方法,是對目標運動信息數據經過多幀積累,以達到檢測跟蹤目標的目的[1],包括Hough變換、動態規劃[2]粒子濾波[3]等。其中,基於粒子濾波方法的檢測前∮跟蹤方法(Particle Filter Track-Before-Detect,PF-TBD)是在Monte Carlo實驗的基礎上實現遞歸的貝葉斯濾波[4-5]。PF-TBD不僅能夠→處理線性高斯問題[6],也能夠處理非線性『、非高斯條件下的檢測跟蹤問※題[7-9]

                    在PF-TBD算法中常用的重采樣方法包括系統重采樣和分層重采樣等方法,這些重采樣方突然大怒法可以讓權重高的粒子盡可能地被采樣到,去除權重低的粒子,解決了粒子的退∑ 化現象。但在對多個目標進行探測時,如果目標Ψ間的信噪比相差較大,可能會導致信噪△比較低的目標被漏檢[10-12]。而如果提高較弱目標的檢測概】率,則可能會導致虛假目標的產生[13-14]

                    針對以上情況,本文提出了一☆種改進的多目標雙層粒子濾波檢測前跟蹤算法(Improved Multi-target Two-layer Particle Filter Track-Before-Detect Algorithm,IM-PF-TBD),算法首先在目標檢測環節引︽入錦標賽選擇粒子過程,該算法能盡可能多地選擇到更多的優質粒子,保證信噪比較低目標的檢測。其次,在新目標驗證環→節,本文提出了基於粒子群融合的點跡融合方法,將檢測目標粒子群和跟蹤目標粒子群進行¤融合,該方法使得■獲得的新的目標跟蹤粒子群包含兩個粒子群的優◤質粒子,提高了粒子群的多樣性,便於虛假目標的剔除。

                1 目標運動模型與傳感器觀測模型

                ck4-gs1-8.gif

                2 基於錦標賽選擇和◣粒子群融合的多目標雙◣層粒子濾波算法

                    傳統的PF-TBD中常用□的重采樣算法如系統重采樣,是采用輪盤賭方法對權重大的粒子進行復制。因此,當出現多個目標的信噪比差距較大時,信噪比較低的目標易妓女就是妓女被信噪比高的目標掩蓋,進而發生虛警或漏檢。針對信↓噪比相差較大的多目標檢測跟蹤問題,本文提出了一種改進的雙層粒子濾波檢測前跟蹤方①法,算法采用雙層粒子濾波[15]的算ω法結構,分為目標跟蹤也对他笑了笑層和目標檢測層□ 兩部分。在檢測環節引入一種錦標賽選擇粒子過程,盡可能多地選擇更多的優質粒子,提高重采樣後【的粒子多樣性,然後通過粒子聚類形成多個目標及相№應粒子群,從而保證多個目標的同時√檢測。此外,在新目標驗證環所不同節,提出一種粒子群融合方法將檢測目標粒子群和跟蹤目標粒子群進行融合,通過抽取兩個目標粒子群中的優对于質粒子,使用交叉操作獲取新生粒子,得到的目標跟蹤粒子群包含卐兩個粒子群的優質粒子,同時提高了粒↓子群的多樣性,從而提高了跟蹤的效果和精度。

                    算法的結構框圖如→圖1所示。

                ck4-t1.gif

                2.1 目標跟蹤層

                    在目標跟▲蹤層中,第k-1融合時刻獲得的跟蹤目標集為{S1,k-1,S2,k-1,…,Sm,k-1},其中■每一個目標i均擁有一個跟蹤粒子群Pi,k-1={p1,i,k-1,p2,i,k-1,…,pN,i,k-1}。算法基於跟蹤粒子群Pi,k-1,在k時刻對↑目標i進行跟蹤,如果『該目標繼續存在,則更新跟蹤目標集中的目標狀態Si,k和粒子群,否則刪少女纤手一伸除該目標及相應跟蹤粒子群。

                    對於跟蹤目標集多了废话就多了中的目標i,算法步驟如下:

                    (1)粒子群Pi,k-1={p1,i,k-1,p2,i,k-1,…,pN,i,k-1}進行狀⌒態轉移;

                    (2)計算〗跟蹤粒子群中每個粒子的多雷達⌒ 權值並進行融合:

                    ①計算跟蹤粒子群中每個粒子的權重,在第u個傳感器『觀測下,第j個粒极端子權重為:

                    ck4-gs9-11.gif

                    (3)采用系統重采樣方法獲得k時刻的跟蹤粒子群Pi,k={p1,i,k,p2,i,k,…,pN,i,k};

                    (4)計算目標i檢測概率,將虛假目標航跡□ 剔除;

                    (5)跟蹤目標集{S1,k-1,S2,k-1,…,Sm,k-1}中每個目標按照以上步驟獲得k時刻∑ 的跟蹤目標集{S1,k,S2,k,…,Sm,k}和相應的子粒▼子群。

                2.2 目標檢測層

                    當一個或幾個目標的信噪比相對於其他于是起来修改纠结目標而言較大時,傳統的系統重采樣方法會集中采樣相應的高權值粒子,忽略其他粒⊙子,從而導致低信噪比目標ㄨ丟失情況。因此,本文在目標檢測層中采用了一種基於錦□標賽選擇和粒子群融合的目標檢測方法,算法基於粒子權事情值,利用錦標賽選擇方法對粒子進行采樣,避免集中采樣同一粒子。顯然,這種采樣方式¤使得粒子權重較大的個體具有較大的“存活”機會。而且,由於選擇粒子的標準是粒子的權重的相對值,不與粒子權重的大小成ㄨ直接比例,因此,能避免某個超級個體背水一战的影響,在一定程度上◥避免了高權重粒子對其他粒子掩蓋。之後,利用均值漂移聚類方法將粒子進行聚類,檢測多個目標。此外,通過粒子群融合方法,將新檢測目標♀與已發現目標對應粒子群融合,按ぷ照粒子權值大小進行排序,保留優質粒子進行對應融合,增加了粒子群的◣多樣性,從而改善已發現吸引了丧尸目標的跟蹤質量。

                    算法具體步驟如下:

                ck4-gs12.gif

                    ②得到每個粒子的權重後歸一化:

                     ck4-gs13-14.gif

                    (4)采用錦標賽重采樣的方法對粒子█群進行篩選,每次從粒子群中抽取一定數量的粒子,然後選擇其中粒子權重最大的進入子代ぷ粒子群,重◥復該操作,直到新的粒子群規模達到原來的粒∩子群規模,子代粒子群為N。在此過程中能篩選出更多優質的目標粒子,從而避免了系統重采樣對某個權重較大粒子單一復制的現象:

                ck4-gs13-14-x1.gif

                ck4-gs13-14-x2.gif

                3 仿真分析

                    仿真場景:共有5部傳感器,均位於原點〗,探測距離為200 km~230 km。探測總幀數k是45幀,每幀的√間隔時間是2.5 s,取别忘了我们只是合作伙伴粒子數目為3 000個,第一個目標的信噪比(Signal to Noise Ratio,SNR)為12 dB,第二個目標的SNR為5 dB。目標1與目標2在第10 s出現,初始狀態←均為[200 km,300 m/s,10 km,0 m/s]T,第40 s兩目標同時消失。設目標存在門限值為0.6,利用本文算法⌒ (IM-PF-TBD)與采用系統重采妈樣的PF-TBD算法(SR-PF-TBD)分別對兩個目標進行檢測跟蹤,Monte Carlo仿真次數50次,結果如表1、圖2、圖3所示。其中,表1列出了在目標出現初期的部分數據,將兩種算法對兩個目標在每一幀的目標存在概率進行了對比;圖2為整個仿真期間兩種算法對目標個數估計結果■的比較,圖3為兩種算法№對目標的均方根誤差(Root Mean Squared Error,RMSE)跟蹤︻結果比較。

                ck4-b1.gif

                ck4-t2.gif

                ck4-t3.gif

                    從表1中可以看▽出,由於目標1相對若是有於目標2信噪比較那分明是七阴绝神掌刚刚开始入门高,因此兩種算法均能及時有效地發現目標1,差別不大。當目標存在門限值為0.6時,兩種算法的目標存在概率在第10幀均大於0.6,能夠及時發現目標。但由於〗目標2相對於目標1信噪比較低,SR-PF-TBD采用以權重的大小決定復制的次數,權重大的粒子復制的次數多,會對目標信噪比較低的粒子產生掩蓋,導致對信噪比低的目標檢測會有一定的延遲。因此,在第14幀才達到0.69,發現目標2,延遲了4幀。而IM-PF-TBD算法由於□ 能盡可能篩選出優質的粒子,從而降低了大權重的粒子對其他目標粒子的影●響,減少△了目標1對目標2的影響,在第11幀的目標存在概率達到0.67,相對於SR-PF-TBD提前看似胆小怕事了提前3幀。因此,IM-PF-TBD算法可以更及時有效地檢測出信噪比相差較大★的目標。此外,從圖2可以看出,SR-PF-TBD算法由於沒有粒子群融合環節,在20 s後出現了3個目標,而本文IM-PF-TBD算法則在整個仿真期間維持了正確的目▂標估計個數,沒有出現虛假目『標。

                    圖3表示了兩種算法對目@標RMSE指標的對比。由於目標1的信噪比較高,兩種算法對都能快速跟蹤上目標1,兩種算法對目標1的誤差相差不】大。目標2信噪比低,容易受〓目標1的影響,IM-PF-TBD算法采用了粒◥子群融合方法,保留了兩個粒子群的優質∩粒子,粒子群合理的分布使得目標RMSE值減小較快maniacfan。RMSE的值可以很快地趨於穩定,SR-PF-TBD沒有粒子群融合環節,粒子分布不均勻,導致跟蹤性能下降,跟蹤誤差◥變大。

                    綜上所述,IM-PF-TBD算法在檢測信噪比〓相差較大的目標時,可以在目◥標出現初期及時發現目標,並能夠在後期及時發現虛假目標並剔除,降低目標RMSE。

                4 結論

                    本文提出了一種改進的多目標雙層粒子濾波檢測前跟蹤算法,在目標檢測層采用錦標賽重采樣方法,提高重采樣後█的粒子的多樣性,保證←多個目標的同時檢測,提高目標出現初期的目標檢測概率,並提出一種粒子群◣融合方法將新檢測目標和已有目標的粒子群融合,便於剔退回去除虛假目標,並提高目標跟蹤精度。仿真結果表看进眼中明,與傳統多目標粒子濾波檢測前跟蹤算法相比,本文提出的改進的多目標㊣雙層粒子濾波檢≡測前跟蹤算法和粒子群融合算法能夠正確發現新生目標和╲降低目標RMSE,正確估計出目標》數目,提高檢測跟蹤精度。

                參考文獻

                [1] 趙誌國,王首勇,同偉.基於重采樣平滑粒子濾波的檢測前跟蹤[J].空軍預警學院學報,2008,22(1):25-28.

                [2] 高潔,杜勁松,張清石,等.一種基於動態規劃的機〓動目標檢測前跟『蹤方法[J].電子技術應你哪只眼睛看到我比了用,2018,44(3):64-67,71.

                [3] BOERS Y,DRIESSEN H,TORSTENSSON J,et al.Track-before-detect algorithm for tracking extended targets[J].Radar,Sonar and Navigation,IEE Proceedings,2006,153(4):345-351.

                [4] MOYER L R,SPAK J,LAMANNA P.A multi-dimensional Hough transform-based track before detect technique for detecting weak targets in strong clutter backgrounds[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(4):3062-3068.

                [5] MALLICK M,KRISHNAMURTHY V,VO B N.Track-before-detect techniques[M].Wiley-IEEE Press,2012:311-362.

                [6] 郭雲飛,張峰.基於QIPF的弱目標檢測前跟◢蹤算法[J].火力√與指揮控制,2016,41(10):59-62.

                [7] 陳澤宗,楊幹,趙晨,等.基於模態函數特征譜的海洋小目標檢測[J].電子技不知道新来術應用,2017,43(5):114-118.

                [8] 梅秀飛.基於分布式MIMO雷達的多目標檢測前跟蹤算法研究[D].成都:電子科技大學,2016.

                [9] 王睿,梁誌兵,王嘉銘.基於多雷達的╳臨近空間目標檢測前跟蹤算法[J].傳感器與微●系統,2016,35(10):116-119.

                [10] 王娜,譚順成,王國宏.目標數未知時基卐於粒子濾波的多目標TBD方法[J].信號處理,2017,33(9):333-345.

                [11] Su Zhouyang,DIVISION R.An improved efficient PF-TBD algorithm[J].Electronic Science & Technology,2017,66(4):366-373.

                [12] BUZZI S,LOPS M,VENTURINO L,et al.Track-before-detect procedures in a multi-target environment[J].IEEE Transactions on Aerospace & Electronic Systems,2008,44(3):1135-1150.

                [13] 董雲龍,黃高東,李保珠,等.基於AIS的雷達高精度誤差校马上就一涌而出準方法[J].電子技術應用,2019,45(6):75-79.

                [14] 關鍵,黃勇.MIMO雷達多目標檢測前跟蹤算法研究[J].電子學報,2010,38(6):1449-1453.

                [15] 茍清松.多目標粒子濾波檢測前跟蹤算法研究[D].成都:電子科技大學,2015.



                作者信息:

                高廣順,陳  霄

                (杭州電子╳科技大學 通信信息傳輸與融合技術國防重點學科實你是菀南孙家外姓子弟驗室,浙江 杭州310018)

                此內容為AET網站原創,未經授權禁止ξ轉載。